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1 Introduction

During this week’s practical we will focus on understanding kernel Principal Component
Analysis (Kernel PCA) by (i) comparing it to Principal Component Analysis (PCA),
(ii) analyzing the role of the chosen kernel and hyper-parameters and (iii) applying it to
high-dimensional overlapping real-world datasets.

2 ML toolbox

ML toolbox contains a set of methods and examples for easily learning and testing ma-
chine learning methods on your data in MATLAB. It is available in the following link:

https://github.com/epfl-lasa/ML_toolbox

From the course Moodle webpage (or the website), the student should download and
extract the .zip file named TP1(PCA,kPCA).zip which contains the following files:

Code Datasets

TP1 kPCA 2D-3D.m breast-cancer-wisconsin.csv

TP1 kPCA HighD.m ionosphere.csv

setup TP1.m hayes-roth.csv

Before proceeding make sure that ./ML toolbox is at the same directory level as the TP
directory ./TP1-PCA+kPCA. You must also place setup TP1.m at the same level. Now, to
add these directories to your search path, type the following in the MATLAB command
window:

1 >> setup TP1
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NOTE: To test that all is working properly with ML Toolbox you can try out some
examples of the toolbox; look in the examples sub-directory.

3 Manifold Learning Techniques

Manifold Learning is a form of non-linear dimensionality reduction widely-used in ma-
chine learning applications to project data onto a nonlinear representation of smaller
dimensions. Such techniques are commonly used as:

• Pre-processing step for clustering or classification algorithms to reduce the dimensionality
and computational costs and improve performance.

• Feature extraction.

In dimensionality reduction problems, given a training dataset X ∈ RN×M composed of
M datapoints with N -dimensions, we would like to find a lower-dimensional embedding
Y ∈ Rp×M , through a mapping function f(x) : x ∈ RN → y ∈ Rp where p < N . This
mapping function can be linear or non-linear, in this practical we will cover an instance
of a linear approach (i.e. PCA) and its non-linear variant (i.e. Kernel PCA).

3.1 Principal Component Analysis (PCA)

In Principal Component Analysis (PCA) the mapping function f(x) : RN → Rp≤N is
given by the following linear projection

y = f(x) = Ax. (1)

where A ∈ Rp×N is the projection matrix, found by diagonalizing an estimate of the
Covariance matrix C of the centered dataset

∑M
i=1 xi = 0:

C =
1

M

M∑
i=1

(xi)(xi)T , (2)

By extracting its eigenvalue decomposition C = VΛVT , the projection matrix A is
constructed as A = VT where V = [v1, . . . ,vN ]. To reduce dimensionality, one then
chooses a sub-set of p eigenvectors vi from V. p can be determined by visualizing the
projections or analyzing the Eigenvalues. The chosen Eigenvectors, i.e. the Principal
Components, represent a new basis which maximize the variance along which the data is
most spread.

For a thorough description of PCA, its application and derivation, refer to the
PCA slides from the Applied Machine Learning Course.
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3.2 Kernel Principal Component Analysis (Kernel PCA)

PCA assumes a linear transformation in the data and, as such, it can only work well if the
data is linearly separable or linearly correlated. When dealing with non-linear inseparable
data one requires a non-linear technique. To this end, [1] proposed a non-linear technique
which exploits kernel methods to find a non-linear transformation that lifts that data to
a high-dimensional feature space φ(x) : RN → RF , where the linear operations of PCA
can be performed. Kernel PCA begins with the Covariance matrix of the data-points
projected to feature space and centered; i.e.

∑M
i=1 φ(xi) = 0:

C =
1

M

M∑
i=1

φ(xi)φ(xi)T , (3)

As in PCA, one must then find eigenvalues λk ≥ 0 and Eigenvectors v ∈ RF , that satisfy
λkvk = Cvk for all k = 1, . . . ,M . Given that vk lies in the span of φ(x1), . . . , φ(xM) the
problem becomes:

λ〈φ(xk),vk〉 = 〈φ(xk), Cvk〉 ∀ k = 1, . . . ,M. (4)

This implies that vk =
∑M

i=1 α
k
i φ(xi). Via the kernel trick k(x,xk) = 〈φ(x), φ(xk)〉

and some substitutions (see [1]), the Eigendecomposition of equation (3) becomes the
following dual Eigenvalue problem:

λkMαk = Kαk (5)

where Kij = k(xi,xj) is the kernel matrix, otherwise known as the Gram matrix and α is
a column vector of M entries αk = [αk1, . . . , α

k
M ]. Diagonalizing, and hence solving for the

Eigenvectors of K̃ = ṼΛṼT (after centering and normalizing K → K̃), is equivalent to
finding the coefficients α. We can then extract the desired p principal components, which,
as in PCA, will correspond to the Eigenvectors with the largest eigenvalues. However, as
opposed to PCA, extracting the principal components is not a straight-forward projec-
tions. This is due to the fact that, the Eigenvectors of K represent the data points already
projected onto the respective principal components. Hence, one must compute the pro-
jection of the image of each point φ(x) onto each k-th vk Eigenvector (for k = 1, . . . , p)
as follows:

〈vk, φ(x)〉 =
M∑
i=1

αki 〈φ(x), φ(xi)〉 =
M∑
i=1

αki k(x,xi). (6)

Thus, the p-dimensional projection of a point x is the vector y = [y1, . . . , yp] for yk ∈ R,
where each yk is computed as follows:

yk(x) = 〈vk, φ(x)〉 =
M∑
i=1

αki k(x,xi) ∀ k = 1, . . . , p (7)

Since the Eigenvectors are computed from the Gram matrix K ∈ RM×M , the number of
principal components to keep can be p ≤ M ; as opposed to PCA where p ≤ N due to
C ∈ RN×N . Until now, we have not defined k(x,xi), Kernel PCA has the flexibility of
handling many types of kernels, as long as it complies with Mercer’s Theorem [2].
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Kernels We have three options implemented in ML toolbox:

• Homogeneous Polynomial: k(x,xi) = (〈x,x〉)d,
where d > 0 and corresponds to the polynomial degree.

• Inhomogeneous Polynomial: k(x,xi) = (〈x,x〉+ c)d,
where d > 0 and corresponds to the polynomial degree and c ≥ 0, generally c = 1.

• Radial Basis Function (Gaussian): k(x,xi) = exp
{
− 1

2σ2 ||x− xi||2
}

,
where σ is the width or scale of the Gaussian kernel centered at xi

4 Kernel PCA Analysis

4.1 Projecting Datasets with PCA & Kernel PCA in ML Toolbox

In the MATLAB script TP1 kPCA 2D-3D.m we provide an example of loading datasets and
applying PCA and Kernel PCA to generate lower-dimensional embeddings of the loaded
datasets. By running the first code sub-block 1(a), the 3D Random Clusters Dataset
shown in Figure 1 will be loaded to the current MATLAB workspace.
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Figure 1: 3D Random Clusters Dataset.
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Figure 2: Explained Variance plot of 3D
Random Clusters Dataset; p = 2 for σ >
90%.

Principal Component Analysis (PCA): By running the second code sub-block
2(a), the Eigenvectors V and Eigenvalues Λ of the Covariance matrix C pertaining to
the PCA algorithm are computed. This block will also plot the explained variance shown
in Figure 2 through the ml explained variance.m function. One can also visualize the
eigenvalues with the ml plot eigenvalues.m function. If in code sub-block 2(b) p is
chosen to be 3, the projected data-points y = Ax are computed and visualized in a
scatter plot as in Figure 3. The diagonal plot correspond to the projections on a single
Eigenvector vi represented by histograms, whereas the off-diagonal plots correspond to
the pair-wise combination of projections. The scatter matrix visualization (Figure 3)
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can help us determine the necessary p to generate a linearly separable embedding. A
typical approach to determine p is to select the number of Eigenvectors that can explain
more than 90% of the variance of the data. As seen in Figure 2, this constraint yields
p = 2. However, by analyzing the scatter matrix (Figure 3), one can see that the first
Eigenvector can already describe a linearly separable distribution of the classes in the
dataset.
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Figure 3: Principal Component Analysis
(PCA) of 3D Random Clusters Dataset
with p = 3.
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Figure 4: Projected Data of 3D Random
Clusters Dataset PCA with p = 3.

When p ≤ 3, the projected points can be visualized in Cartesian coordinates as in Figure
4. This plot can be obtained by modifying the plotting option defined in line 102, as:

1 plot options.is eig = false;

Kernel Principal Component Analysis (Kernel PCA): In the third code block,
one can find the necessary functions to extract the kernel principal components of a
dataset. By running the third code sub-block 3(a), the kernel matrix K and its corre-
sponding Eigenvectors α and Eigenvalues Λ are computed. One must define the following
parameters: (i) the number of Eigenvectors to compute, theoretically this can be M , how-
ever this is computationally inefficient, hence, we choose a moderate value, i.e. between
10 and 20; (ii) the kernel type and (iii) kernel parameters, as follows:

1 % Compute kPCA with ML toolbox
2 options = [];
3 options.method name = 'KPCA'; % Choosing kernel-PCA method
4 options.nbDimensions = 10; % Number of Eigenvectors to keep.
5 options.kernel = 'gauss'; % Type of Kernel: {'poly', 'gauss'}
6 options.kpar = [0.75]; % Variance for the RBF Kernel
7 % For 'poly' kpar = [offset degree]
8 [kpca X, mappingkPCA] = ml projection(X',options);

Once α and Λ are computed, one can visualize the Eigenvalues to determine an appro-
priate p with the ml plot eigenvalues.m as in Figure 5. For the given dataset, a value
of p = 3 seems to be appropriate for the chosen kernel (RBF) and hyper-parameter
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(σ = 0.75), as the Eigenvalues λi stop decreasing drastically after λ3. To estimate the
projections of X with p = 3 one must then use (7) to compute the projection on each
dimension. This is implemented in code sub-block 3(b), accompanied with the necessary
functions to visualize the projections, as in Figure 6.
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Figure 5: Eigenvalues of kPCA from 3D
Random Clusters Dataset.
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Figure 6: Projected Data of 3D Random
Clusters Dataset kPCA with p = 3.

Dual Eigenvector Isoline Projection: Due to the special properties of kernel PCA,
for each dual eigenvector vk, we can display the isolines (i.e. level curves) through (6).
To recall, the isolines correspond to the region of the space for which the points have the
same projection on the dual eigenvector. Moreover, we can superpose the data-points in
original space on each Eigenvector projection. By running code sub-block 3(c) one can
generate such projections as the ones depicted in Figure 7. To choose the Eigenvectors
to plot, one must modify the following isoline plotting option:

1 iso plot options.eigen idx = [1:6]; % Eigenvectors to use.

As can be seen, not unlike PCA, already with the first Eigenvector, the clusters are well-
separated. Moreover, with the second Eigenvector each cluster belongs to a discriminative
peak in the isolines; i.e. automatically achieving a form of feature extraction. To better
visualize such phenomenon, instead of plotting the isolines with contours we can plot
them with 3D surface plots, as shown in Figure 8 for the first two Eigenvectors. Such
plots can be achieved by simply setting the following isoline plotting option to true:

1 iso plot options.b plot surf = true; % Plot isolines as (3d) surface
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Eigen(1) Eig-val: 4.34
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Eigen(2) Eig-val: 3.09
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Eigen(3) Eig-val: 2.16
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Eigen(6) Eig-val: 1.88
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Figure 7: Isolines of the first p = 6 Eigenvectors of kPCA from the 3D Random
Clusters Dataset (showing only the first 2 dimensions of the original data).

Grid Search of Kernel Parameters: In order to achieve a “good” embedding, one
of the most important things to take into account is the kernel hyper-parameters. Given
a dataset of 2/3D dimensions, it might be simple to find an appropriate value of, let’s say
the σ for the RBF Kernel by visually estimating how the data is spread and subsequently
visualizing the dual Eigenvector isolines. This process, however, can be cumbersome and
sometimes infeasible for high-dimensional data. To alleviate this, one can do a grid search
on a range of parameters and determine the best value by analyzing the behavior of their
corresponding eigenvalues, as in Figure 9. From this grid search, one can draw many
conclusions. First of all, one can see that very large and very low values of σ have no
impact on the outcome of the Eigenvalues, hence are not optimal. The behavior that we
seek, is that of σ = [1, 4.64], where the first Eigenvalues are very high and suddenly a
drastic drop occurs, not surprisingly around λ3. As will be seen in the next practical,
this procedure is a good starting point to find the optimal clusters K, when unknown.

To run this grid search on your dataset, we have provided example code in sub-block 3(d)

of the MATLAB script: TP1 kPCA 2D-3D.m. One can modify the range of parameters and
type of kernel as follows:

1 grid options = [];
2 grid options.method name = 'KPCA';
3 grid options.nbDimensions = 10;
4 grid options.kernel = 'gauss';
5

6 % Set Range of Hyper-Parameters
7 kpars = [0.001,0.01, 0.05,0.1,0.2, 0.5, 1, 2];
8 % kpars = [0,0,0,0; 1,2,3,4]; % for 'poly': [offset; order]
9 [ eigenvalues ] = ml kernel grid search(X',grid options,kpars);
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Figure 8: Isolines (Surface plot) of the first p = 2 Eigenvectors of kPCA from the 3D
Random Clusters Dataset.

0 2 4 6 8 10
Indices of eigenvectors

0

5

10

15

20

25

30

35

40

E
ig

en
va

lu
es

0.01
0.0215443
0.0464159
0.1
0.215443
0.464159
1
2.15443
4.64159
10

Figure 9: Grid Search of σ for the RBF Kernel.

4.2 Analysis of Kernel Choice and Hyper-parameters

TASK 1: Try Kernel PCA on Non-Linearly Separable 2D/3D Toy Datasets
You must try to determine with which type of kernel and with which parameters you
could generate a non-linear projection that can transform the dataset into an easily
separable embedding, where a simple clustering/classification algorithm can be applied.
The datasets in question are depicted in Figure 10 and 11. In order to address this, you
should ask yourself the following questions:

• What kind of projection can be achieved with an RBF kernel and with a polynomial
kernel?

• How should we relate the kernel width (σ) to the data available?

• What is the influence of the degree (d) of a polynomial kernel? Does it matter if
the degree is even or odd?
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Once you have answered these questions, load the datasets by running sub-blocks 1(b)

and 1(c) of the accompanying MATLAB script: TP1 kPCA 2D.m and find a good pro-
jection where the classes are easily separable by modifying sub-blocks 3(a-c) with your
chosen kernel and parameters.
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Figure 10: 2D Concentric Circles Dataset.
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Figure 11: 2D CheckerBoard Dataset.

Once you have found good projections for these examples, try to create different
shapes to get an intuition on which type of structure can be encapsulated by each kernel.
You can draw 2D Data with the ml generate mouse data.m function from ML toolbox.
We provide an example script to load the GUI in:

ML toolbox/functions/data generation/ml draw data.m.

By running this script you can load the drawing GUI shown in Figure 12. After drawing
your data, you should click on the Store Data button, this will store a data array in
your MATLAB workspace. After running the following sub-blocks the data and labels
will be stored in two different arrays: X ∈ R2×M and y ∈ IM , which can then be used to
visualize and manipulate in MATLAB (Figure 13).
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Figure 12: ML toolbox 2D Data Drawing
GUI.
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Figure 13: Data After Storing it in MAT-
LAB workspace.

Try to create examples of data separable by both polynomial kernel and RBF kernel.
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4.3 Performance of PCA/KPCA on High-Dimensional Datasets

TASK 2: Compare PCA and Kernel PCA on High-Dimensional Data
You will now compare Kernel PCA and PCA on high-dimensional datasets. You will
choose the hyper-parameters carefully and study whether you can achieve a good pro-
jection with each method. A good projection’s definition then depends on the application:

In the case of kPCA as a pre-processing step for classification or clustering, a good
projection is when the clustering/classification algorithms perform well. As we have not
seen any classification or clustering method in class yet, the quality of the projection
can be estimated visually with the visualizations tools provided by ML toolbox, e.g.
visualizing the projections on the Eigenvectors (PCA), the iso-lines of the Eigenvectors
(kernel PCA) or for instance by estimating the separation between the labeled classes
after projection.

1. Breast Cancer Wisconsin: This dataset is used to predict “benign” or “ma-
lignant” tumors. The dataset is composed of M = 698 datapoints of N = 9
dimensions, each corresponding to cell nucleus features in the range of [1, 10]. The
datapoints belong to two classes y ∈ {benign,malignant} (See Figure 14).

Breast-Cancer-Wisconsin (Diagnostic) Dataset
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Figure 14: Scatter Matrix of Breast Cancer Wisconsin Dataset
on Original Dimensions.

HINT: Try to find a projection in which the data has few overlapping
data-points from different classes.

This dataset was retrieved from:
https://www.kaggle.com/uciml/breast-cancer-wisconsin-data

10

https://www.kaggle.com/uciml/breast-cancer-wisconsin-data


2. Ionosphere: This radar data was collected by a system in Goose Bay, Labrador.
This system consists of a phased array of 16 high-frequency antennas with a total
transmitted power on the order of 6.4 kilowatts. The targets were free electrons
in the ionosphere. “Good” radar returns are those showing evidence of some type
of structure in the ionosphere. “Bad” returns are those that do not; their signals
pass through the ionosphere. The data is very noisy and seems to have a lot of
overlapping values. The dataset is already normalized between -1 and 1.

Ionosphere Dataset
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Figure 15: Scatter Matrix of Ionosphere Dataset on Original [1:4:32] Dimensions.

HINT: Try to find a projection in which the data has few overlapping
data-points from different classes.

This dataset was retrieved from:

https://archive.ics.uci.edu/ml/datasets/Ionosphere
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3. Hayes-Roth: This dataset is designed to test classification algorithms and has a
highly non-linear class repartition. As seen in Figure 16, the classes of this dataset
seem to be completely overlapping.

Hayes Roth Dataset
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Figure 16: Scatter Matrix of Hayes Roth Dataset

HINT: Find good kernels and projections that will ease the task of sepa-
rating all three classes.

This dataset was retrieved from:

https://archive.ics.uci.edu/ml/datasets/Hayes-Roth

To load these datasets, we have provided example code in sub-block 1(a-c) of the MAT-
LAB script: TP1 kPCA HighD.m. Visualizing the scatter matrix of a high-dimensional
dataset can be computationally demanding, to this end, one can select which dimensions
to visualize in the scatter matrix as follows:

1 % Plot original data
2 plot options = [];
3 plot options.is eig = false;
4 plot options.labels = labels;
5 plot options.title = 'Ionosphere Dataset';
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6

7 viz dim = [1:4:32];
8

9 if exist('h1','var') && isvalid(h1), delete(h1);end
10 h1 = ml plot data(X(viz dim,:)',plot options);

The rest of the code blocks in the TP1 kPCA HighD.m MATLAB script include the same
functions used in TP1 kPCA 2D-3D.m to compute the PCA and Kernel PCA projections.

HINT: To find a reasonable range for σ with the RBF Kernel one could analyze
the Euclidean pair-wise distances with the following functions: pdist.m and
hist.m.
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